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This paper focuses on the nature of jamming, as seen in two-dimensional frictional granular systems
consisting of photoelastic particles. The photoelastic technique is unique at this time, in its capability to
provide detailed particle-scale information on forces and kinematic quantities such as particle
displacements and rotations. These experiments first explore isotropic stress states near point J through
measurements of the mean contact number per particle, Z, and the pressure, P as functions of the
packing fraction, ¢. In this case, the experiments show some but not all aspects of jamming, as expected
on the basis of simulations and models that typically assume conservative, hence frictionless, forces
between particles. Specifically, there is a rapid growth in Z, at a reasonable ¢ which we identify with as
¢.. It is possible to fit Z and P, to power law expressions in ¢ — ¢. above ¢., and to obtain exponents
that are in agreement with simulations and models. However, the experiments differ from theory on
several points, as typified by the rounding that is observed in Z and P near ¢.. The application of shear
to these same 2D granular systems leads to phenomena that are qualitatively different from the
standard picture of jamming. In particular, there is a range of packing fractions below ¢., where the
application of shear strain at constant ¢ leads to jammed stress-anisotropic states, i.e. they have a non-
zero shear stress, 7. The application of shear strain to an initially isotropically compressed (hence
jammed) state, does not lead to an unjammed state per se. Rather, shear strain at constant ¢ first leads
to an increase of both t and P. Additional strain leads to a succession of jammed states interspersed
with relatively localized failures of the force network leading to other stress-anisotropic states that are
jammed at typically somewhat lower stress. The locus of jammed states requires a state space that
involves not only ¢ and t, but also P. P, 7, and Z are all hysteretic functions of shear strain for fixed ¢.
However, we find that both P and 7 are roughly linear functions of Z for strains large enough to jam the
system. This implies that these shear-jammed states satisfy a Coulomb like-relation, || = uP.

1 Introduction

The collection of papers in this special issue testifies to the intense
interest in jamming of disordered systems, such as dense granular
materials, that are far from equilibrium. The absence of ther-
modynamic equilibrium for granular systems in particular, has
been at the heart of an effort to develop new kinds of statistical
models, some of which we explore here."™* A great challenge is to
account for their rich structure, which involves filamentary force
networks>?? as in Fig. 1. A key part of the focus on these systems
arises from the proposal by Liu and Nagel*®* of a universal
jamming diagram for a broad range of systems that includes
foams, colloids, molecular glasses and granular materials, among
others. We sketch this diagram in the left part of Fig. 2. The idea
is that there is a region of low temperature (if that applies), low
shear stress, and high density, where a material is jammed, i.e.
mechanically stable. Density is expressed in terms of the packing
fraction, ¢, or its inverse in Fig. 2 (left), which is defined as the
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fraction of the system volume (area in two dimensions) that is
occupied by solid material. There have been many studies that
have focused on point J in this diagram for the case of zero or low
shear stress. An important goal of the present studies is to better
understand the role played by shear stress, an issue that has been
relatively unexplored from the point of view of jamming.
However, the role of shear stress has been of interest in the
context of soil and geomechanics for a considerable time.'* A key
issue is the failure of granular systems which are under a load
that includes both isotropic stress (e.g. pressure, P) and also shear

(@) T (b)

Fig. 1 Photoelastic images for isotropic (a) and anisotropic (b) states.
We discuss below the experimental techniques used to generate these
images.
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Fig. 2 Left: Representation of jamming diagram, after Liu and Nagel.
The three axes are the temperature, which applies in certain systems (e.g.
molecular glasses), inverse packing fraction (¢ is the volume/area
occupied by solid for 3D/2D systems), and 7 is the shear stress. Right:
Schematic of a Coulomb picture for mechanically stable states for
a granular material for two dimensions, in terms of the principal stresses,
g;. The dashed lines are the failure loci where |t| = uP. Inside this cone,
the material is mechanically stable. From this perspective, point J is at the
origin.

stress, 7. When the shear stress exceeds a critical threshold rela-
tive to the pressure, such a system fails. This type of criterion was
the basis of Coulomb’s famous work of over two centuries ago.'
The basic form of this scenario is sketched in the right part of
Fig. 2 for the two-dimensional case. The o; are the principal
stresses, i.e., the eigenvalues of the shear stress tensor, o, and
states within the Coulomb cone denoted by the dashed lines are
mechanically stable. Note that the pressure is given by P = (g, +
03)/2 and the shear stress by 7 = (0, — 01)/2. If the failure
threshold (for a noncohesive material) is 1 = + uP, where u is
a constant, then the corresponding failure loci in the | — g, plane
are given by the dashed lines o, = [(1 £ p)/(1 F w)]o;. Note that
the density of the system does not appear explicitly here
(although it is incorporated in models such as Critical State Soil
Mechanics'), but rather the important entities are stresses. The
isotropic jammed states, © = 0, lie along the dotted line. Paths in
stress space starting within the jammed (mechanically stable)
region, such as A, B, or C, lead to failure when they reach the
Coulomb cone. There are a number of interesting cases here,
including paths such as A, B, or the isotropic line which fail at
zero stress, and path C which fails under finite stress. In the Liu—
Nagel picture, all three paths would originate in the jammed
region, with 7= 0, and densities above the value at point J. Paths
A and B would approach the boundary of the jammed region at
point J, whereas path C would intersect the jammed region at
a point with t # 0.

Below, we review recent experimental tests®'>¢ carried out by
the present authors that used photoelastic particles to test models
for isotropic jamming near point J and to probe the role of stress
anisotropy on jamming. From these studies, several important
conclusions follow. First, under isotropic conditions, granular
materials do, by and large, exhibit behavior near point J that is
consistent with expectations from numerical simulations'¢2°
(MD/DEM) and on theoretical constructs based on generalized
statistical formulations."™ The latter were first proposed by
Edwards et al' and have been more recently developed by
Snoeijer et al.,> Tighe et al.** and Henkes et al.>* Second, under
anisotropic stress conditions, careful accounting must be taken

of not only the density and shear stress, but also the pressure. In
particular, there exist densities below that for isotropic jamming,
which can support jammed stress-anisotropic states.'> Hence, the
T = 0 jamming picture for granular materials must account for
shear stress, density and pressure.

We note that there are some clear differences in isotropic and
anisotropic cases at a heuristic level, as seen in images of the force
chain structures, Fig. 1. We also see at a more microscopic level,
that the distributions of normal contact forces differ between
isotropic and anisotropic states,® as seen in Fig. 3.

In the remainder of this work, we first briefly describe our
experimental approach, which uses photoelastic particles con-
tained in a two-dimensional (2D) biaxial device. The ‘biax’
allows us to prepare states over a range of stress conditions, and
the use of photoelastic particles allows us to make detailed
quantitative measurements of forces, displacements and rota-
tions. We then review observations for stresses and contact
numbers, Z, for a 2D granular system, first under isotropic
conditions'® near point J, and then for strongly anisotropic
states'? that are produced by applying shear strain to an iso-
tropically unjammed state. Hence, for the latter case, the density
is below the isotropic jamming value. Such states imply the
existence of a jamming diagram that involves not only shear
stress and packing fraction, but also pressure as an independent
variable. We present concluding remarks and a hypothetical
jamming diagram in the final section.

2 Experimental techniques

As noted above, for the experiments discussed in this work, we
used a 2D biax. Fig. 4 (top) illustrates this apparatus, with which
we can deform a given rectangular sample of particles into any
other desired rectangular shape, within the limits of the appa-
ratus. Of particular interest is the case of pure shear (compression
in one direction, equal dilation in the other, and fixed overall
area), and isotropic compression (equal compression in both
directions).

The particles used in these studies are disks manufactured
from photoelastic material. When a photoelastic material is
subject to stress, it becomes birefringent, and when viewed
between crossed polarizers, it exhibits light and dark bands, as in
the bottom left image of Fig. 4. For circular polarizers, the
transmitted light along a ray traversing a 2D section is given by

[ =1, sin® [(o5 — 01)CtlA], (1)

where [, is the incident intensity of light with wavelength, A, and
where C is the stress optic coefficient. Hence, the bands encode
the detailed stress within each particle. For a granular system,
these stresses are generated by the (vector) forces at the contacts
on each particle. Previous researchers have used photoelasticity
to probe granular systems,*” but our approach is unique in that
we use photoelasticity to obtain the contact forces for large
collections of particles. For more details, the reader may
consult.®!122223 The basic idea is that we carry out a nonlinear
least-squares fit of the photoelastic image for each particle to the
known solution for the photoelastic response within a particle
due to point contact forces. In turn, this solution is based on the
stress fields given by linear elasticity theory for point contacts
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Fig. 3 Distributions for the normal, F,, and tangential, F,, interparticle contact forces. Parts a and b pertain to a stress-anisotropic state, such as part
b of Fig. 2. Parts ¢ and d pertain to a stress-isotropic state, such as part a of Fig. 1.

acting on a disk. This provides the photoelastic response through
eqn (1). In this procedure, the fit parameters are the vector
contact forces on a particle from its neighbors. To demonstrate
the reasonableness of this approach, we contrast an original
color photoelastic image and the image produced using the fit-
determined forces in Fig. 5. Note that the photoelastic response,
as given by eqn (1), is sensitive to the color/wavelength of the
incident light. We take the approach of using white incident light,
and color filter the resulting images. The righthand image of
Fig. 5 is derived from a color filtered version of the lefthand
image. Of course, we must also determine the location of the
particles, and the inter-particle contacts. In the process, we also
track the rotation and displacement of individual particles as the
system is slowly deformed. The rotational motion of the particles
is tracked by means of a thin bar drawn on each particle with
fluorescent ink. Under ordinary light, the bars are nearly invis-
ible, and do not interfere with the photoelastic measurements.
However, they glow brightly under UV light, Fig. 4 (bottom,
right). Hence, our most general experimental procedure for
measuring particle properties requires three separate images, as
typified by the blow-ups in Fig. 4: one with polarizers for the
photoelasticity measurements, one under ordinary light without
polarizers for identifying particle centers, and a third taken under
UV illumination and without polarizers to determining particle
rotation.

From the determination of the contact forces, we obtain as
an immediate consequence the distributions of the contact
forces, P(F). Since the forces are vectoral, it is useful, as in
Fig. 3, to separately consider the normal and the tangential
components, F, and F, respectively, where the latter are due to
friction.

We use several approaches for characterizing the force and
contact networks. Since these need not be isotropic, it is impor-
tant to maintain full tensoral characterizations. The force
anisotropy is evident in Fig. 1(b) and 9. In particular, the contact
network becomes manifestly anisotropic during cyclic shear. A
simple geometric measure of the network is then the fabric
tensor, R;;:

Ck

N
Ry=o3" S gt @
Nk:I c=1

The summation and N include only non-rattler disks, ¢, is the
number of contacts on disk k, and n;.“ is the /th component of the
unit branch vector pointing from the center of the disk k to
a contact c¢. The definitions of relevant quantities are illustrated
in Fig. 6. We consider a rattler disk to have less than two
detectable contacts. The average contact number, Z, is then given
by the trace of the fabric tensor R;;. Here, we do not extensively
explore the geometric anisotropy, but the interested reader can
obtain more information elsewhere'? for the present system
regarding this issue.

Additionally, we consider the stress tensor g; and the force
moment tensor, ;. These quantities reflect the anisotropy of the
force networks. The local force moment tensor is

Ck

Gy =) firie (3)
c=1
and the system-averaged stress tensor is
1 N
k=1
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Fig. 4 Sketch of apparatus (top row) and small sections of the three image types that we obtain. Top row: Left: top view of the biaxial apparatus (biax),
a 2D ‘biax’. Pairs of opposing boundaries in the x and y directions move under precise computer control to produce desired quasi-static strains. These
boundaries confine photoelastic particles which also lie on a smooth slippery sheet of Plexiglas. Right: Sketch showing a side view to indicate the
photoelastic imaging process. A camera is mounted above the biax, and the whole apparatus, including the disks, are sandwiched between crossed
circular polarizers. Following each small strain step, we obtain three images, as shown in the bottom row: one with crossed polarizers (left), one without
polarizers (center), and one without polarizers but with UV illumination (right).

Fig. 5 Original color photoelastic image (left) and the image produced
by the contact forces computed by the force-inverse algorithm for a color-
filtered version of this image (right).

Contact ¢

Fig. 6 Sketch explaining the notation for definitions of the fabric, force-
moment and stress tensors.

A is the system area; N, ¢, I, ry and j are the same as in
the expression of R;; (e.g. Fig. 6); f* is the ith component of
the contact force on particle k at contact ¢. The sum and
difference of g, and o, the eigenvalues of ¢, divided by 2, yield
P and 7, as defined in the introduction. Below, we take o; =< a5, so
that t = 0.

We note one final experimental issue which is important in
determining Z, and to a lesser extent, o, for states very near
jamming. The most sensitive and accurate way to determine
contacts is to look for a photoelastic response from particles that
are in apparent contact.'® However, when the stresses are small,
the photoelastic response at some contacts may fall below our
detection threshold. Nevertheless, we can correct for missed
contacts very close to jamming. As discussed below, we find that
the distribution of normal contact forces scales with the mean
normal force, (F,).

P(Fn) = <Fn>71f(Fn/<Fn>)a (5)

where f'is to a reasonable approximation, the same function for
all mean forces. We can use this fact to estimate the number of
the missed contacts reasonably well. Forces below our
measurement threshold also affect the stresses, but to a smaller
extent. We expect that we miss a fraction of contacts given by

J6cP(F,)dF,] [§ P(F,)dF,, ©)
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where F, is a small known cut-off force below which we cannot
detect the photoelastic response. For the particles used here, this
force is roughly the weight of a particle. Hence, the measured Z’s
are lower than their true values by

JEP(F)dF,/ [§ P(F,)dF,. (M
We also underestimate the pressure by a factor of
JRF,P(F,)dF,] [§ F,P(F,)dF,. ®)

To simplify the calculation, this last expression assumes that
all particles have the same radius, which is a reasonably good
assumption. The resulting correction in Z is ~15% very near
jamming, but negligible once Z is slightly bit above 3.0. Due to
the fact that the stresses depend linearly on the contact forces,
corrections for missed contacts for these quantities are signifi-
cantly smaller, only 1-2% close to the jamming transition, and
entirely negligible above jamming. We consider these corrections
in data below, where to simplify the correction, we assume that
the force distribution is an exponential.

2.1 Experimental procedures for compression/decompression:
Isotropic case

The experimental approaches are somewhat different depending
on whether we are considering isotropic or aniostropic systems.
For the isotropic case, we probed the region near point J using
two different protocols. In the first protocol, we gradually
compressed the system from an initially stress-free state, taking
small strain steps until the system was above the jamming
density. In the second approach, we decompressed the system,
again by small strain steps, starting in an already compressed/
jammed isotropic state. The end state was a (nearly) stress-free
state. The results for both protocols are similar above ¢,
however, for densities below jamming, the data for Z obtained by
compression are a few percent below those for decompression. In
what follows, we show data obtained by the second approach.
After each decompression step, we apply tapping to relax stress
in the system. We conclude that the preparation protocol does
have an effect, and that other methods might produce somewhat
different results. The approach used here is designed to produce
as low-energy state as possible, which is roughly analogous to the
annealing process invoked in some simulations.’ After each
decompression, we obtain two images, with and without polar-
izers, respectively. The former is used to compute contact forces
and eventually stresses. The latter is used to obtain the disk
centers. In this case, we did not track particle rotations.

For the data presented below, we performed two sets of
experiments. The first experiment was carried out using a larger
range, 0.8390 = ¢ = 0.8650, and a correspondingly larger step
size, A¢ = 0.016. After we had identified the jamming region, we
carried out a second set of experiments at a finer scale with
0.840745 = ¢ = 0.853312, and with a finer step size, A¢p =
0.000324.

2.2 Experimental procedure for pure shear: anisotropic case

The experiments considered here probe the evolution of a system
under pure shear, where the density ¢ = 0.795 + 0.003, is lower

than what is required to obtain a jammed isotropic state. Pure
shear consists of compression in one direction, the ‘y-direction’
and a corresponding dilation in the x-direction, such that the
total system area remains fixed. We start with an initially square
set of boundaries that are filled with 1568 bidisperse (so as to
avoid crystallization) photoelastic disks. The sample consists of
roughly 80% particles of diameter = 0.74 cm, and 20% particles
of diameter = 0.86 cm. We determined the area mass density by
two independent measurements, from which we then obtain ¢
from the photoelastic material mass density. We estimate that the
resulting ¢’s are accurate to + 0.003.

We prepare the initial state as closely as possible to isotropic
and stress-free. We then shear the system by compression and
dilation along the two independent axes, as in Fig. 4 (top-left),
keeping the system area constant. We characterize the defor-
mation in terms of the strain, €, along the x-axis with € = (x — x)/
xo. Here, xq is the initial size of the square. After reaching
a maximum deformation €,,,, we reverse the shear by
compression along the x-axis and expansion along the y-axis
until the system boundaries have reached their initial square
configuration. We then continue to shear in the reverse direction,
(In other experiments,'? we have also carried out cyclic shear, but
here we chiefly focus on only one shear cycle.) We carry out this
process in small incremental quasi-static steps such that |e|
changes by ée = + 3.3 x 107 After each step, we stop and
acquire three sets of images, as typified by Fig. 4; blow-ups from
such figures are shown in the bottom row of Fig. 4. Thus, we
obtain an image with polarizers in place (left-most image),
without the polarizers (middle) and under UV light (right) so as
to determine the rotation of the particles.

3 Experimental results
3.1 Jamming for the isotropic case

The point of the isotropic studies was two-fold. First, we sought
to test recent simulations and theory'®2*** which indicate that
near jamming, collections of spherical particles, should exhibit
a discontinuous increase in Z, at a critical volume fraction, ¢..
Below ¢, Z and P are expected to be 0. At ¢, Z is expect to jump
discontinuously, and above ¢,, Z and P are predicted to increase
as power laws in ¢ — ¢.. The exponent § for Z — Z, is expected to
be 1/2 (or nearly so®°), and the exponent, ¥ = a,— 1, for P is
expected to depend on the inter-particle contact force, which in
turn is parameterized by the exponent,a. We note that the
systems studied theoretically were typically frictionless, and
subjected to isotropic overall strains. In view of the second point,
the shear stress was 7 = 0.

Second, we sought to test recent predictions, based on novel
entropy approaches (i.e. the force/stress ensemble) by Henkes
et al** These predictions, which are a first attempt at con-
structing a field theory of the transition at point J led to the
particular P-Z relation, involve a generalized ‘temperature’-like
variable, with both Z and P given as specific functions of this
quantity. We are able to test these predictions by determining the
relation between P and Z and observing whether the data are
consistent with the Henkes et al. prediction.

As noted above, the models of interest typically involve fric-
tionless particles, whereas the experiments are inherently

2986 | Soft Matter, 2010, 6, 2982-2991

This journal is © The Royal Society of Chemistry 2010


http://dx.doi.org/10.1039/c000147c

Downloaded by Duke University on 10 June 2011
Published on 02 June 2010 on http://pubs.rsc.org | doi:10.1039/C000147C

View Online

frictional. The presence or absence of friction affects Z., and
perhaps other aspects of the jamming transition. For instance, in
the isostatic limit, Z is 4 for frictionless disks, whereas for fric-
tional disks, Z is around and slightly above 3, for friction coef-
ficients that are typical of many physical grains.* Predictions
such as those for critical exponents, amplitudes, ezc. may also
need modification. Nevertheless, one might expect that the
systems of frictional particles and systems of frictionless particles
would exhibit similar behavior, if the frictional forces are typi-
cally small relative to the normal forces. In recent experiments,
we have found that statistically this is true, and that in the mean,
the typical inter-grain frictional forces are ~10% of the normal
forces.?

We now turn to experimental data for Z and P. In the inset of
Fig. 7, we show data for Z over a broad range of ¢. Here, we
show data both with rattlers (stars) and without rattlers
(squares). Specifically, the average Z can be computed either by
counting only the force bearing disks, or by counting all the disks
including rattlers which do not contribute to the mechanical
stability of the system. Here, we consider as rattlers, all the disks
which have less than two observable contacts. The data show
a significant, but not discontinuous, rise in Z at the transition
density corresponding to ¢. = 0.84, indicating the onset of
system-wide jamming. We note that below, we apply corrections
to data for Z obtained from a sheared system. The correction in
this case is possible because we have sufficient data to be
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Fig.7 Data for the average contact number and pressure at the jamming
transition. Top and bottom panels show Z — Z. and P vs. ¢ — ¢,
respectively. Different symbols indicate rattlers included (stars) or
excluded (diamonds). Dashed and full curves in the top panel are power-
law fits (¢ — ¢.)° with 8 = 0.495 and 0.561 (with and without rattlers,
respectively). Lower panel: Full curve gives the fit (¢ — ¢.)¥ with y = 1.1;
dashed line shows a linear law for comparison. Inset: Z vs. ¢ over a larger
range in ¢.

confident that P(F) is constant regardless of the shear strain.
However, the data for the isotropic case has not been corrected
because we do not have enough data to be sure that P(F) is
invariant with strain in the compressive case.

Above this ¢, the variations of P(¢) with/without rattlers tend
to merge, although at lower ¢, they differ. Data for P(¢) in Fig. 7
remain at a nearly flat background below jamming, and then
grow above ¢.. The onset of increasing P occurs at a ¢ where Z
begins its rapid increase. In fact, neither P nor Z are identically
zero below jamming. Insight into this behavior follows from
studies of shear carried out at ¢’s below jamming, which we
discuss in the next subsection.

We compare these experimental results to predictions above ¢..
by means of least squares fits of Z - Z.and P— P.to ¢ — ¢,, asin
Fig. 7. Necessarily, fit values for 8 and y depend on the choice of
¢. and whether rattlers are excluded or not. And, there is some
ambiguity, due to the rounding in both quantities. Using several
different approaches, described more fully in Majmudar ez al.,'®
we obtain ¢, in the range 0.840 to 0.843. In the former case, we
obtain, 0.494 = 3 = 0.564, and for the latter case, 0.363 = 8 =
0.525. Overall, a logical choice for ¢, is ¢, = 0.84220 where P
rises above the background level. This choice, which corresponds
to the results in Fig. 7, yields a consistent fit for both P and Z. On
balance, we, find that our values of 8 = 0.55 for the data without
rattlers are larger than the value of 0.5 reported in,'”** but
smaller than those of Donev et al.,** who found 0.6 in 3D.

Fig. 7 also shows the variation of P with ¢ (lower panel).
These results indicate a clear transition at ¢. = 0.8422 + 0.0005.
Least squares fitting P — P, above ¢.to P— P. « (¢ — ¢.)* yields
Y = 1.1 £ 0.05 for this choice of ¢.. (Here, P, corresponds to the
background P.) This exponent is consistent with the measured
interparticle interaction force, and the expected exponent based
on the simulations of Silbert and O’Hern et al.'”** More detailed
discussion is available in Majmudar et al.'®

Finally, we consider the predictions of Henkes et al,® by
parametrically plotting the data of Fig. 7 in the form P— P, vs. Z
above ¢.. We remove the background pressure P, at ¢. (which we
believe is due to induced shear strains). In this fit, we also
normalize P by P.. These authors’ predictions (which, as noted
above, are a first attempt at constructing a field theory of the
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Fitting Parameters:
29 Zc =3.04+0.108
& ) e =13£0.15
o
[ 15 r
o
1 L
0.5
O L
0. : : :
3_5 3 35 4 45

z

Fig. 8 Experimental data for P vs. Z (symbols) and a fit to the model of
Henkes and Chakraborty?® (solid line).
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transition at Point J) can be cast as (P — P.)/P,. = u—[(4u* + 1)"> -
112, where u = C(Z - Z.). C = €la, is a system-dependent
constant, where € characterizes the grain elasticity, and «.. is the
critical value for their generalized Boltzmann factor, «. We have
fitted to this form where P., Z. and C are sensible fitting
parameters. Fig. 8 shows reasonable, although not perfect,
agreement with this prediction. From this fit, we obtain Z,. =
3.04, which is close to the nominal minimum isostatic value Z. =
3, and is consistent with the analysis above.

The present experiments are consistent with predictions on
many, but not all, fronts. We find a rapid, but not totally sharp
increase in Z at ¢.. We also find power-law behavior above ¢, for
Z and P with exponents 8 = 1/2 and an exponent for P of y =
1.1. These exponents are in good agreement with simulations. We
also find reasonable agreement with the Henkes et al. theory. We
note that the simulations and theory in question are for fric-
tionless particles. Thus, agreement here is interesting, but not
necessarily completely expected. There are some additional
departures from the theory/MD pictures noted above. In addi-
tion, to the rounded transition in Z near ¢, the amplitude of Z —
Z.vs ¢ — ¢, differs from simulations. A comment on the presence
of a background pressure is also relevant here. It is conceivable
that this arises because the particles experience frictional forces
with the base on which they rest. In fact, Majmudar et al.'®
present analysis indicating the base friction is well below the level
needed to produce the observe background pressure. Rather, we
believe that this is due to small shear-induced stresses that are
very difficult to remove in physical experiments. The discussion
below on shear-induced jamming provides some additional
insight into the role played by shear.

3.2 Jamming under shear: anisotropic case

We now turn to results for pure shear, as typified by Fig. 9. As
noted in the experimental section, the initial state of this system is
unjammed, ie., ¢ = 0.795 is below the value for isotropic
jamming. When shear is applied at constant density, a strong
force chain network evolves, and for shear strains of a few
percent, the system reaches a jammed state. Associated with
jamming is the obvious formation of an oriented force chain
network, as seen in the photoelastic images. The presence of this
network is also manifested in the fabric, i.e. a purely geometric
measure of inter-grain contacts. In Zhang et al.,'*> we show that
statistically, the principal eigendirection of the fabric tensor
aligns with the compressive direction at roughly the same time
that the force chain network makes its appearance. In Fig. 9, we
show the results of applying shear strains of up to 27%, followed
by a return to the original system geometry, all at fixed ¢. This
corresponds to one half of a full shear cycle. Note that the final
state, which corresponds to zero global strain, is jammed and
contains a strong force network. We show data for a complete
shear cycle, in Fig. 10, 11, and 12. These correspond to a shear
strain to a maximum value, ¢,,,, = 0.29 from the initial state,
followed by a shear strain reversal back to the original square
shape of the boundaries, then a negative shear strain to € = 0.16,
and a return once again to the original boundary configuration.
This particular shear cycle was the second in a series of six cycles.
Hence, the data for Z start at a value of well above 3.0. Similarly,
the data for P and 7 start at values above 0. (In Zhang et al.,** we

Fig. 9 Sequence of photoelastic images showing the evolution of the
force chains as the system is sheared in the forward (a, b), and reverse
direction (c, d). These four images are chosen at different steps from the
Ist shear cycle, out of a set of six complete cycles. The strains are € =
0.033, 0.267, 0.267, and 0.033, for a, b, c, d, respectively. The original
nearly stress-free state of (a) has the same density and boundary
configuration as (d), which is jammed. In images b and c, the sidewall of
the biax has moved into view, creating dark bands at the bottom of
the images. Also, (c) was obtained following a small reverse strain step
from (b).

283 0.1 0 0.1 0.2 0.3
€

Fig. 10 Mean contact number Z vs. strain e for the second cycle.

w

82 01 0 0.1 0.2 0.3
€

Fig. 11 Pressure, P vs. strain, €, for the second cycle, showing strong
hysteresis.
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Fig. 12 Shear stress 7 vs. strain, € for the second cycle.

show results for the full six cycles.) These figures show
unequivocally that the stresses and Z are hysteretic in the strain.
Particularly striking is the observation that the final state, part
(d), of Fig. 9 is jammed, with a strong force network clearly
visible, whereas the initial state before any shear strain was
applied (a), was nearly unjammed. Again, we emphasize that the
density is constant throughout. This means that neither the
density nor the strain provide a unique characterization of
a state. Hence, we must re-evaluate the nature of the jamming
diagram when t # 0.

It is interesting that the hysteresis loops for all three of Z and P
and 7 vs. € are qualitatively similar, which suggests that there may
exist a relation among them. The existence of such a relationship
is demonstrated in Fig. 13 to 16, where we have accumulated
data over six shear cycles,'* which are indicated by the various
colors. In particular, results for P vs. Z and 7 vs. Z, respectively,
fall on nearly common curves.

There are several aspects of these figures that deserve discus-
sion. In the first two of these figures, there is clearly rounding.
This is due to several causes. These data have not been corrected
for weak contacts, as discussed above. This correction is
substantive, i.e. ~15%, when Z < 3.0. This effect is within the
noise of the data for larger Z. The effect of missed contacts on the

20r &

)

E15-

(N/

o 10r

g

T 28 3 35 4
Z

Fig. 13 Pressure, P, vs. average contact number, Z, without corrections
for weak contacts. Different colors correspond to data from different
shear cycles. Data points from the first shear cycle, shown in red, deviate
slightly from other shear cycles.

T (N/m)

4
Fig. 14 Shear stress, T vs. average contact number, Z.
25
20r
_—
£ 15}
S
T 10
5t
C? 2.5 3 3.5 4
iz
Fig. 15 Pressure, P, vs. average contact number, Z. Same data as the

previous figure for P, but with a correction applied for weak contacts.
Different colors correspond to data from the same shear cycles as above.

% 25

Fig. 16 Shear stress, t vs. average contact number, Z after removal of
data points from the first shear cycle and data points where the strong
network direction is reforming.

pressure is much weaker than on Z. For 7 vs. Z, the relative
scatter is higher than for P vs. Z. A significant cause for the
apparent scatter is the fact that during the first of the six shear
cycles, the system exhibits transient behavior. Also, in relatively
small ranges of strain following a reversal, the stresses and Z
depart from mean behavior, until a new network is formed. If we
remove data from the first cycle and immediately after reversals,
and correct for missed contacts, the results for 7 vs. Z yield
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a collapse that is comparable to that for P vs. Z as seen in Fig. 16.
We note that although P and Z do collapse, the spread of the
data points around the curve is larger than the experimental
errors. In fact, every time a new network of force chains is
formed, following a shear reversal, there are small systematic
differences in the stresses. The width of the scatter in these figures
is primarily caused by these differences. Note that except for the
switching regimes, the mean of the ratio /P is constant.

We conclude this section by considering the distributions of
contact forces, as shown in Fig. 17 for the normal forces and in
Fig. 18 for the tangential forces. In these distributions, we have
normalized the data for F,, or F; after each step by (F,), the mean
normal force at that strain step. We have combined the data for
several adjacent steps within a cycle, but binned them separately
for each shear cycle number. Specifically, ten for most data
points and three to five for data near a reversal, are combined for
each data point on the plots. We note that in general, distribu-
tions of F,/(F,) or F/(F,) for single strain steps within a given
shear cycle yield the same type of collapse, although the data are
noisier.

10
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: ; cycleZ
oy -2 cycle3
— ‘10 2 . §
w= - cycled
>~ By cycleb
[ =
w cyclef
o 10 | 1
-6
18 2 6 8

an{‘Fn)

Fig. 17 Data for the distribution of normal forces, F),, expressed as F,/
(F,) of all six shear cycles. We show data from all strain steps collectively
for each cycle. Here, data for F,/(F,) are normalized by (F,) for the given
step.
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Fig. 18 Data for the distribution of normalized tangential forces, F,/(F,)
of all six shear cycles. As for the distribution of normal forces, the
statistics are combined for all steps within each cycle, where the
normalization, (F,) is made for each step.

A key point is that the distributions show a common form for
all data of a given force type (i.e. normal vs. tangential forces).
For normal forces, the distributions consist of a nearly expo-
nential fall-off at large F,/(F,) and a peak at low F,/(F,). P(F,/
(F,)) also shows an exponential decay, but a weaker peak near 0.
Although some of the fall-off of both distributions at low force is
due to the experimental lower limit of force detection, we believe
that this is a relatively minor effect. The tangential force distri-
butions, P(F,/(F,)), decay faster than that for the normal forces,
which is due simply to the choice of normalization by (F),) rather
than by (F,).

4 Concluding remarks

In this work, we have contrasted novel measurements of granular
properties near jamming. These experiments are unique, to our
knowledge, in their capacity to provide detailed grain-scale
information on granular systems. These experiments are also
highly novel because they have probed jamming behavior of
anisotropic states.

We have sought to compare these experiments to theories of
several types for the jamming transition: global scenarios, after
Liu and Nagel,"® simulations, and statistical models.?*72%2* At
the most qualitative level, we have explored the paths in state
space that granular systems follow for two contrasting cases:
isotropic strain, and pure shear strain. The first case has
produced experimental results that resemble several of the
theoretical results discussed above, even though these typically
apply to frictionless particles. In particular, we see jamming over
a narrow range of packing fractions, and exponents for Z and P
(but not necessarily amplitudes) that are consistent with fric-
tionless models. And, we find reasonable consistency with the
work of Henkes et al.®*

The second, anisotropic, case yields results that deviate
substantially from the usual jamming scenario. Specifically, we
find that for ¢’s which have unjammed states under isotropic
conditions, it is possible to generate anisotropic jammed states by
applying pure shear strain. The evolution of jammed states under
shear strain is a manifestation of the same principle as Reynolds
dilatancy. In his classic experiments,?® an elastic bag filled with
granular material was subject to shear strain, with the result that
the material expanded/dilated against the compliant container.
In the present case, the boundaries do not allow for expansion
during shear strain, and consequently, the pressure and shear
stress grow. It is also interesting that anisotropic sheared states
occur at the end of a shear cycle, when the boundaries of the
system have been returned to the initial unstrained conditions. It
seems likely that this last point is important for our studies of
nominally isotropically deformed states. In particular, any small
induced shear associated with the motion of the biax boundaries
may lead to shear-induced stresses and hence, the observed
background pressures and rounding in Z observed for the
isotropic jamming experiments.

The existence of jammed states below ¢, for isotropic jamming
necessitates a new look at the jamming diagram, and we sketch
a possibility that is consistent with the present experiments in
Fig. 19. In part (a) of this figure, we sketch nominal paths for
different packing fractions, projected onto the 7 — P plane (light
solid curves labelled 1 and 2). The dashed line corresponds to the
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Fig. 19 Sketch of boundaries for jammed states. (a) Sketch of projec-
tions of special paths (see text) onto the t — P plane. The curves labelled
1 and 2 are curves of constant density; the dot-dashed line is a nominal
Coulomb line; and the dashed line is the limiting line P = 7. (b) A
rendering of these paths in the full t — P — ¢ plane.

formal limit where P = 7. Since P = (0, + 02)/2, and 1 = (65— a1)/
2 (taken here to be always positive), it is not possible to have
a state where 7 > P, as long as the material is noncohesive, since
the g; are both positive (or zero). The disallowed region of the t —
P plane is crosshatched out. In the present experiments, there
exist states for some range ¢g; < ¢ < ¢. where it is possible to
generate shear-jammed states. These states arise out of P=1=0,
and to reasonable approximation, lie along a line T = uP, where
< 1. Such alocus is indicated by the dashed-dot line in the T — P
plane. Although not discussed here in detail, we have also carried
out pure shear, again at constant ¢, but this time with ¢ > ¢, i.e.
starting from isotropically compressed states. Necessarily, in
these cases, the densities are above that for isotropic jamming,
the initial pressure is positive, and the initial 7 is zero. In such
cases, 7 starts at 0, but grows as the system is strained. However,
P also grows under such strains, and the paths labeled ‘1’ and ‘2’
are hypothetical examples of such shear protocols, projected
onto the t — P plane. Under sufficient shear strain, individual
contacts (and sometimes as a consequence multiple contacts) fail.
However, it is worth remarking that after such a failure, the
system typically finds a new jammed state, at somewhat reduced
stress. Thus, there is always available a ‘nearby’ jammed state.
From the Coulomb point of view, shear strain in these experi-
ments leads to states that live on or close to the Coulomb cone.
The application of shear at constant ¢ > ¢, leads to relatively
localized failures that reduce T and maintain the system in the
jammed region. In this sense, the present experiments indicate
that for granular materials, the boundary in the ¢ — = plane when
¢ > ¢. is not so much a limit between states in and out of
mechanical equilibrium, e.g. jammed vs. unjammed. Rather, it is
a limit which the system does not cross while maintaining a fixed
density. It is presumably the presence of such states that allow
nearly rate-independent continuous shear strain of granular
samples at low shear rates and in geometries (e.g. Couette?”) that
allow unbounded shear strain. If we then fill in the third direction
of this state diagram, we obtain something like the sketch of
Fig. 19.

An important issue concerns the variables used in Fig. 19. One
could sketch a jamming diagram in the usual variables, where

there is a line segment between ¢g; and ¢, but that does not very
well represent the fact that this region has multiple states. That is,
below Point-J, there are intrinsically anisotropic definitively
jammed states that arise under shear strain, as well as isotropic
unjammed states. Alternatively, one could replace 1/¢ with 1/P.
This has some drawbacks too. First, the jamming point moves to
infinity, and second, all states at zero P are now squeezed into the
same point. One might also look for other variables, such as /P,
but this is awkward near Point-J. We have chosen the repre-
sentation in Fig. 19 because it does provide a means of dis-
tinguishing the various states in question. We conclude by noting
that granular systems (in the literal sense of ‘granular’) may be
special due to the presence of non-zero friction in intergranular
forces. This conclusion is supported by the recent numerical
studies of Huessinger and Barrat*® which do not yield the same
shear-jammed states seen in the present experiments.
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